Connect with us

Ciencia

Kathrin Jansen, el cerebro detrás de la vacuna de Pfizer: la niña de salud frágil que se convirtió en una celebridad científica

Publicado

on

Nació en Alemania Oriental sufriendo infecciones de garganta a repetición. Huyó al Oeste con su familia, estudió microbiología e investigó ideas vanguardistas que chocaron con mucho escepticismo. Tras crear tres vacunas cruciales, ya nadie duda de ella

El lunes 9 de noviembre, cuando Pfizer anunció que su vacuna contra el COVID-19 mostraba un 90% de efectividad, hasta las noticias sobre las elecciones en los Estados Unidos pasaron a un segundo plano. De pronto el fin de la pandemia podría asomar en el horizonte; incluso las acciones de las empresas que crecieron debido a la crisis del coronavirus, como Zoom, bajaron. El mundo entero hablaba del gigante farmacológico y de los resultados de sus ensayos de fase 3, la última etapa en la investigación. Nadie, sin embargo, hablaba de Kathrin Jansen, la responsable del logro.

No es una modelo ni una actriz —rara vez se la ve con maquillaje—, ni una atleta ni una millonaria: es una microbióloga. Pero en el mundo científico esta mujer de 62 años, nacida en la ex Alemania Oriental, tiene estatus de celebridad: dirigió el desarrollo de dos de las vacunas best-sellers del mundo, la del virus del papiloma humano (VPH) y la del neumococo. Y ahora, al frente de un equipo de 650 personas, concluyó con éxito la investigación y la creación de la vacuna contra el SARS-CoV-2.

Mikael Dolsten, titular de investigación y desarrollo en Pfizer, dijo a Stat que Jansen encarna la urgencia de la empresa “por terminar con esta pandemia espantosa”. Y en buena medida se echó al hombro esa tarea: mediante llamadas diarias desde su casa de Manhattan, con Dolsten y con el equipo de BioNTech —firma socia de Pfizer en la búsqueda de esta vacuna—, ella coordinó las pruebas de cuatro candidatas potenciales y llegó a competir cuerpo a cuerpo con el otro laboratorio que parecía avanzar más rápido, Moderna, pero que no logró los mismos resultados.

El lunes 9 de noviembre Pfizer anunció que su vacuna contra el COVID-19 mostraba un 90% de efectividad. (REUTERS/Dado Ruvic)El lunes 9 de noviembre Pfizer anunció que su vacuna contra el COVID-19 mostraba un 90% de efectividad. (REUTERS/Dado Ruvic)

“Ella no sacrificaría la calidad por la velocidad”, explicó William Gruber, un ejecutivo histórico del laboratorio que ahora buscará la aprobación de la vacuna. “Es una académica realmente intransigente en lo que respecta al desarrollo de vacunas”, citó Matthew Herper, autor del artículo.

Aunque se juega un negocio anual multimillonario, Jansen mantuvo un dominio firme y calmo de la operación, consciente de que tardara lo que tardase sería un récord: ninguna vacuna se desarrolló antes en menos de cuatro años. Se concentró, como siempre, en los datos. “Ella es exactamente la persona a la que uno querría en ese puesto”, agregó a Stat Paul Offit, director del Centro de Educación sobre Vacunas del Hospital de Niños de Filadelfia.

Jansen nació en Erfurt y durante toda su infancia sufrió repetidas infecciones de garganta que su padre, un ingeniero químico, solía tratar con antibióticos y codeína, siempre a mano en la casa. “Uno es pequeño y sufre esas toses violentas y se siente tan enfermo, y entonces le dan una droga y se siente mejor”, recordó lo que podría haber sido el grado cero de su vocación.

Al frente de un equipo de 650 personas, Kathrin Jansen concluyó con éxito la investigación y la creación de la vacuna contra el SARS-CoV-2. (REUTERS/Carlo Allegri)Al frente de un equipo de 650 personas, Kathrin Jansen concluyó con éxito la investigación y la creación de la vacuna contra el SARS-CoV-2. (REUTERS/Carlo Allegri)

Huida al Oeste y carrera científica

Poco antes de la construcción del muro de Berlín, en 1961, la familia pasó a Alemania Occidental: aunque sus padres tenían buenos trabajos, temían por el porvenir. Salieron en tres automóviles; todo lo demás lo dejaron atrás. El padre mintió que iba a una entrevista de trabajo. La futura microbióloga viajó sedada con pastillas de dormir para evitar que contradijera la historia en el control fronterizo.

Estudió en la Universidad de Marburg y logró asistir a las clases de Rudolf Thauer, quien creó el departamento de microbiología. “Como estudiante graduada, Jansen aprendió por las malas el valor científico del fracaso”, contó Stat. “Al terminar su tesis de doctorado, creía que había descubierto una nueva vía química en las bacterias. Hizo entonces un experimento final, y sus resultados se desmoronaron”. Fue una lección valiosa para su futuro en el desarrollo de drogas, donde la tasa de fallo es del 90% de las medicinas que se prueban.

Tras un breve paso por la Universidad de Cornell y el Hospital General de Massachusetts, volvió a Europa para trabajar en el Instituto de Biología Molecular de Glaxo en Ginebra; allí conoció a Alan Shaw, quien pasó a Merck en los Estados Unidos y la invitó a trabajar en la división de vacunas de la empresa. Asistió a la muerte de varios proyectos pero se enamoró de uno que todos sus colegas consideraban una locura: VPH, que a comienzos de la década de 1980 se identificó como causa del cáncer de útero, que tenía una alta mortalidad.

Con los casos de COVID-19 en aumento en varios lugares del mundo, el anuncio de los resultados de las pruebas de Pfizer desplazó a las demás noticias. (EL COMERCIO / ZUMA PRESS)
Con los casos de COVID-19 en aumento en varios lugares del mundo, el anuncio de los resultados de las pruebas de Pfizer desplazó a las demás noticias. (EL COMERCIO / ZUMA PRESS)

VPH, su primera vacuna de impacto global

Merck ya había trabajado en la modificación de un virus para hacer una vacuna: la de la hepatitis B. Pero —recordó Edward Scolnick, encargado de los laboratorios de investigación de la compañía entre 1985 y 2002— no estaban interesados: otro laboratorio acababa de fracasar en la búsqueda de una vacuna contra el herpes y el VPH era muy difícil de investigar, sobre todo porque no se podía cultivar en el laboratorio, así que el estudio directo era inviable.

Jansen insistió; Scolnick le pidió datos y ella le entregó una pila de artículos científicos para leer. Una semana más tarde, estaba convencido. Sólo necesitaría algunos ensayos previos para justificar el proyecto, le dijo a Jansen, quien se comprometió a completarlos de inmediato. “Ella es intrépida a la hora de asumir cualquier proyecto que considere de importancia, y no teme lanzarse de cabeza y e ir averiguando qué hay que hacer”, la describió a Stat. “En esta industria no es siempre así, porque muchos proyectos fracasan y la gente se preocupa por su empleo, si los bajarán de categoría, si los despedirán, si los pasarán por encima. Ella simplemente no piensa en eso”.

Durante el proceso Jansen enfrentó el escepticismo de sus colegas en Merck, y también acusaciones de dilapidar recursos y hasta gritos en los pasillos. En 2002, un ensayo de 2.400 mujeres mostró que una vacuna contra unas cepa de HPV tenía una efectividad del 100%, y cuatro años más tarde Gardasil recibió aprobación de las autoridades sanitarias. Entre esas fechas, en octubre de 2004, Jansen se fue de Merck.

Pfizer, que pagaba a BioNTech por su tecnología de RNA para tratar de crear un nuevo tipo de vacuna contra la gripe, reorientó sus investigaciones al combate de la pandemia. (EFE/Esteban Biba)
Pfizer, que pagaba a BioNTech por su tecnología de RNA para tratar de crear un nuevo tipo de vacuna contra la gripe, reorientó sus investigaciones al combate de la pandemia. (EFE/Esteban Biba)

“Si tienes una intuición científica y eres cuidadoso con los experimentos, tienes que seguir tu instinto y no permitir que los opositores te saquen de tu camino”, dijo mientras se sumaba al equipo de VaxGen, conocido por el fracaso de una vacuna contra el VIH, para encarar su nuevo proyecto.

“Quería explorar el aprendizaje y ser responsable de más que sólo el aspecto de la investigación”, dijo sobre su llegada a la empresa que, tras los ataques del 11 de septiembre de 2001, había recibido un contrato de USD 877,5 millones del gobierno para producir 75 millones de dosis de una vacuna contra el ántrax. El bioterrorismo sería su campo por un tiempo, pero el principal desafío científico, mantener la vacuna químicamente estable, no se pudo.

En julio de 2006 Jansen pasó a Wyeth para volver a sumergirse en un campo nuevo: las vacunas para niños. Emilio Emini, un ex jefe de ella en Merck, la convocó a trabajar en “una de las joyas de la corona” de la compañía, como comparó Stat: Prevnar.

Mediante llamadas diarias desde su casa de Manhattan Kathrin Jansen coordinó las pruebas de cuatro candidatas potenciales a vacuna contra el COVID-19 y compitió cuerpo a cuerpo con el otro laboratorio que parecía avanzar más rápido, Moderna.Mediante llamadas diarias desde su casa de Manhattan Kathrin Jansen coordinó las pruebas de cuatro candidatas potenciales a vacuna contra el COVID-19 y compitió cuerpo a cuerpo con el otro laboratorio que parecía avanzar más rápido, Moderna.

Prevnar 13, la vacuna más vendida en el mundo

Desde su éxito médico y comercial en 2000, había logrado que las tasas de enfermedades por el neumococo, como neumonía, infecciones sanguíneas y meningitis, se redujeran en un 80% para los niños de menos de cinco años. Era eficaz en siete cepas de la bacteria; sin embargo, otras más raras, incluida la virulenta 19a, eludían su acción. Wyeth trabajaba en Prevnar 13, una versión contra 13 cepas del neumococo.

“Pero cada cepa sumaba complejidad, y Prevnar 13 fue la vacuna más complicada que se haya hecho”, señaló Herper. Ella llegó, estudió el trabajo que había hecho hasta el momento, y le preguntó a Emini: “¿Tenías idea de hasta qué punto esta situación es mala?”. Fue una pregunta sin queja, de mera curiosidad; a continuación, Jansen se puso manos a la obra. Hoy Emini —quien dirige el desarrollo global de vacunas en la Fundación Bill & Melinda Gates— dijo a Stat: “Honestamente, no creo que hubiéramos podido tener éxito sin Kathrin”.

Pfizer compró Wyeth en 2009, por USD 68.000 millones. A la gran farmacológica le faltaba una división fuerte de vacunas propias, y Prevnar 13 ocupó ese vacío al ser aprobada en 2010 para niños y para prevenir la neumonía en adultos mayores en 2012. “La vacuna es el producto más vendido de Pfizer y la vacuna más vendida en el mundo”, al menos hasta ahora que la que ofrece una protección del 90% contra el COVID-19 le presentará una competencia feroz. En todo caso, las ventas de Prevnar 13 (mientras se desarrolla una versión con 20 cepas) en 2020 ha sido de USD 5.800 millones.

Kathrin Jansen trabajaba en la vacuna contra el neumococo en Wyeth cuando Pfizer compró ese laboratorio en 2009, por USD 68.000 millones. (REUTERS/Carlo Allegri)Kathrin Jansen trabajaba en la vacuna contra el neumococo en Wyeth cuando Pfizer compró ese laboratorio en 2009, por USD 68.000 millones. (REUTERS/Carlo Allegri)

La vacuna contra el coronavirus y sus nuevos proyectos

En la actualidad Jansen, que es titular de la investigación en vacunas de Pfizer, trabaja en otros proyectos además de la nueva iteración de Prevnar y la bomba mundial de la vacuna contra el SARS-CoV-2, y todos son arduos. El primero, el virus sincitial respiratorio, la razón principal de hospitalización de niños, y dos bacterias resistentes a las drogas, el estafilococo dorado —una lucha que comenzó en sus años en Merck, y todavía no da resultados— y el Clostridioides difficile.

Pero todas esas actividades habituales quedaron cabeza abajo cuando el coronavirus comenzó a correr por el mundo a comienzos de 2020. Pfizer, que pagaba a BioNTech por su tecnología de RNA para tratar de crear un nuevo tipo de vacuna contra la gripe, que utilizara el material genético en lugar de un fragmento del virus, comprendió que el proyecto principal debía pasar a un costado para dar lugar a otro, con las mismas herramientas, para detener la pandemia.

Jansen había hablado personalmente con Ugur Sahin, el fundador de BioNTech, un oncólogo, investigador y emprendedor, y se habían caído mutuamente bien. “Con alguna gente simplemente tienes una buena relación de inmediato”, dijo a Stat. Meses más tarde, ante la expansión del SARS-CoV-2, Sahin comenzó a reunir piezas de información epidemiológicas y no le costó demasiado preocuparse: transmisible por el aire, sumamente contagioso y con una tasa de mortalidad superior a la gripe, era la materia de la que están hechas las pandemias. Su equipo comenzó con diversos ensayos y, apenas tuvo algo, llamó a Jansen:

La vacuna de Pfizer y BioNTech utiliza una plataforma novedosa, a partir del material genético del virus, RNA, lo cual constituyó un desafío doble. (REUTERS/Dado Ruvic)La vacuna de Pfizer y BioNTech utiliza una plataforma novedosa, a partir del material genético del virus, RNA, lo cual constituyó un desafío doble. (REUTERS/Dado Ruvic)

—¿Crees que Pfizer querría trabajar en esta vacuna con BioNTech?

—Desde luego —le respondió ella—. En realidad, yo misma estaba a punto de llamarte.

El desafío era doble: al igual que la vacuna de Moderna, que utiliza la misma tecnología genética, la de Pfizer probaba a la vez esa modalidad de inmunización y su eficacia contra este coronavirus específico. Tanto las de AstraZeneca como la de Johnson & Johnson, por ejemplo, trabajan con plataformas tradicionales de fragmentos del microorganismo, o versiones inactivas.

Una vez más, el escepticismo rodeó su trabajo, que esta vez era, además, urgente. Ella se mantuvo en calma al recordar cómo, hace más de 15 años, había escuchado variaciones de los discursos desalentadores cuando trabajaba en Gardasil, su éxito contra el VPH. “Había mucha gente que pensaba que no iba a funcionar, y desde luego, estaban equivocados”, dijo. De manera similar, ahora tuvo confianza en una generación totalmente distinta de vacunas.

Y el anuncio del lunes 9 de noviembre, que ha sacudido al mundo, parece haberle concedido, una vez más, la razón.

(Visited 159 times, 1 visits today)

Ciencia

Cómo será la base que la NASA planea instalar en la Luna en 2030

Publicado

on

Por

Los científicos utilizarán polvo lunar para desarrollar un material especial que permita construir instalaciones sólidas y duraderas.

De acuerdo a los lineamientos de su Programa General de Exploración Lunar, presentado en septiembre pasado, la NASA empezó a trabajar con una empresa especializada en tecnologías de la construcción para dar forma a la base que instalará en 2030 en el satélite natural de la Tierra.

Para poder erigir una estructura sólida y duradera, los investigadores analizan la posibilidad de utilizar un material especial –con el polvo lunar como principal componente-, que resulte apto para la creación de plataformas de aterrizaje, carreteras y otras instalaciones en la superficie de la Luna.

El nuevo producto, a desarrollarse en impresoras 3D, sería similar al concreto, según afirmó Jason Ballard, CEO y cofundador de la compañía ICON. Por su parte, el ejecutivo del Programa de la Dirección de Misión de Tecnología Espacial, Niki Werkheiser, consideró que la iniciativa “ayudará a garantizar la ampliación de capacidades de construcción en otros mundos, cuando llegue el momento”.

Información previa

A partir de la información proporcionada por misiones realizadas anteriormente, la NASA comprobó que el polvo lunar –compuesto por minerales y fragmentos de vidrio desde hace millones de años- tiende a ser afilado, abrasivo y muy pegajoso.

A partir de información proporcionada por misiones anteriores, los científicos comprobaron que el polvo lunar tiende a ser afilado, abrasivo y muy pegajoso. Foto: Shutterstock

A partir de información proporcionada por misiones anteriores, los científicos comprobaron que el polvo lunar tiende a ser afilado, abrasivo y muy pegajoso. Foto: Shutterstock

El plan “De la Luna a Marte, tecnologías de construcción autónoma planetaria” es impulsado por un contrato del Gobierno en Investigación e Innovación de Pequeñas Empresas. Además cuenta con la participación directa del Centro Marshall de Vuelos Espaciales de la NASA, ubicado en Huntsville, estado de Alabama, Estados Unidos.

“Queremos aumentar el nivel de preparación de la tecnología y los sistemas de prueba, para demostrar que sería factible desarrollar una impresora 3D a gran escala, que pueda construir infraestructura en la Luna o Marte”, declaró Corky Clinton, director asociado de la Oficina de Ciencia y Tecnología del Centro Marshall.

Otras utilidades de diseños en 3D

Las posibilidades de expansión de estructuras habitables y viables a través de diseños 3D fueron analizadas por los estudios de arquitectura Bjarke Ingles Group (BIG) y Space Exploration Architecture (SEArch +).

Werkheiser sostiene que la estrategia de “unir fuerzas y compartir los costos entre múltiples agencias gubernamentales nos permite acelerar el cronograma de desarrollo y llevar a buen término las capacidades centrales, en las que tenemos un interés común”.

El proyecto de la futura estación espacial en la Luna cuenta con la participación del Centro Marshall de Vuelos Espaciales de la NASA, ubicado en Huntsville, estado de Alabama, Estados Unidos. Foto: NASA

El proyecto de la futura estación espacial en la Luna cuenta con la participación del Centro Marshall de Vuelos Espaciales de la NASA, ubicado en Huntsville, estado de Alabama, Estados Unidos. Foto: NASA

(Visited 7 times, 1 visits today)
Seguir leyendo

Ciencia

El principio activo para fabricar la vacuna de Oxford-AstraZeneca partió desde la Argentina hacia México

Publicado

on

Por

Con un importante operativo policial, el primer embarque para desarrollar 6 millones de dosis despegó esta noche desde Ezeiza. La producción estará a cargo del laboratorio del empresario y médico argentino Hugo Sigman

El primer embarque del principio activo para fabricar 6 millones de vacunas de Oxford-AstraZeneca partió esta noche desde Ezeiza con destino a México. El avión de Aeroméxico –preparado para trasladar hasta 25 toneladas– despegó a las 22.15. Esto ocurrió tras la aprobación de los reguladores del Reino Unido –tal como había adelantado Infobae y la aprobación de la Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT) bajo el uso de emergencia de esta fórmula para su aplicación en la Argentina.

El principio activo ya fue empaquetado para volar a MéxicoEl principio activo ya fue empaquetado para volar a México

El proceso de producción de la vacuna de Oxford-AztraZeneca comienza en la Argentina a través del hub biotecnológico mAbxience (Grupo Insud), mientras que en México, el laboratorio Liomont se encargará de completar el proceso de estabilización, fabricación y envasado del medicamento.

En este sentido, se podría decir que de a poco se avanza hacia la etapa final del suministro de 22,4 millones de dosis de vacunas para Argentina y de 150 millones de dosis para la región.

Hoy estamos avanzando hacia los pasos finales del proceso de fabricación y suministro, y permitiendo que nuestro país y América Latina tengan una vacuna efectiva, segura, fácil de almacenar (2-8 grados) y tremendamente accesible sin fines de lucro mientras dure la pandemia. El plan de producción está en curso y la vacuna estará disponible durante el primer semestre del año”, aseguró en exclusiva a Infobae Agustín Lamas, presidente de AstraZeneca para el Cono Sur.

El operativo para llevar el principio activo de la vacuna a EzeizaEl operativo para llevar el principio activo de la vacuna a Ezeiza

“Para nosotros es un privilegio producir esta vacuna. Porque la vacuna de AstraZeneca va a ser un hito en la historia de la medicina mundial”, dijo el médico y empresario Hugo Sigman, cofundador junto a su esposa Silvia Gold y CEO del Grupo Insud, durante un encuentro realizado por la Fundación de Estudios para la Salud y Seguridad Social (FESS) en su 9º Jornada anual sobre Responsabilidad Social en Salud y Medio Ambiente.

La vacuna de AstraZeneca por una decisión conjunta con la Universidad de Oxford se va a vender no profit, es decir, sin ganancia alguna. Va a valer entre 3 y 4 dólares, depende del país y los costos internos. Yo tuve la oportunidad de escuchar a la doctora Sarah Gilbert, que lleva adelante el proyecto y posible candidata al premio Nobel, que dijo que el objetivo era hacer un acuerdo con una compañía privada para que la vacuna pudiera producirse masivamente en todo el mundo, pero que tuviera 3 condiciones: que durante la pandemia se vendiera no profit para que sea accesible, que se produzca a riesgo antes de ser aprobada, y que sea distribuida en todo el mundo”, explicó Sigman.

Fundada en 2009, mAbxience, el laboratorio argentino elegido por su par británico para la elaboración del principio activo de su vacuna, es la compañía del Grupo Insud dedicada a la biotecnología, con foco en la investigación, desarrollo y fabricación de medicamentos para enfermedades oncológicas y autoinmunes. Posee tres plantas de producción: una en España y otras dos en la Argentina, ubicadas en las localidades de Munro y Garín. Esta última fue inaugurada en febrero pasado.

AZD1222 surgió de décadas de investigación sobre vacunas basadas en adenovirusAZD1222 surgió de décadas de investigación sobre vacunas basadas en adenovirus

¿Cómo funciona la vacuna? El virus SARS-CoV-2 está repleto de proteínas que utiliza para ingresar a las células humanas. Estas proteínas, denominadas proteínas de pico, son un objetivo tentador para posibles vacunas y tratamientos. La vacuna Oxford-AstraZeneca se basa en las instrucciones genéticas del virus para construir la proteína de pico. Pero a diferencia de las vacunas Pfizer-BioNTech y Moderna, que almacenan las instrucciones en ARN monocatenario, la vacuna Oxford utiliza ADN bicatenario.

Los investigadores agregaron el gen de la proteína de pico de coronavirus a otro virus llamado adenovirus. Los adenovirus son virus comunes que generalmente causan resfriados o síntomas similares a los de la gripe. El equipo de Oxford-AstraZeneca utilizó una versión modificada de un adenovirus de chimpancé, conocido como ChAdOx1, que puede ingresar a las células, pero no puede replicarse dentro de ellas.

AZD1222 surgió de décadas de investigación sobre vacunas basadas en adenovirus. En julio, se aprobó la primera para uso general: una vacuna contra el ébola, fabricada por Johnson & Johnson. Y se continúa –en los huecos que deja la jerarquía que ocupó la investigación sobre el COVID-19– con la realización de los ensayos clínicos avanzados para otras enfermedades, como el VIH y el Zika.

El empresario Hugo SigmanEl empresario Hugo Sigman

Los datos publicados a principios de diciembre en la revista médica The Lancet indicaron que la vacuna es efectiva en un 62% cuando se suministran dos dosis completas de la vacuna, pero que la efectividad asciende al 90% cuando se suministra la mitad de la primera dosis seguida de una completa en la segunda.

Hace unos días, fue el director ejecutivo de la farmacéutica AstraZeneca, Pascal Soriot, quien aseguró que el laboratorio había encontrado la “fórmula ganadora” para hacer que su vacuna contra el COVID-19 tenga una efectividad a la altura de las de Pfizer/BioNTech, del 95%, y Moderna, del 94%. “Creemos que hemos hallado la fórmula ganadora para alcanzar una efectividad que, tras dos dosis, sea tan alta como todas las demás”, explicó Soriot al dominical Sunday Times sobre el preparado que su compañía desarrolla junto a la universidad de Oxford.

(Visited 2 times, 1 visits today)
Seguir leyendo

Ciencia

El primer paso hacia una vacuna argentina

Publicado

on

Por

Es uno de los 85 prototipos mundiales que están en fase preclínica, de ensayos en animales. Es una investigación de trece científicos de la Universidad de San Martín y el Conicet.

Es la mañana de un día agobiante. Por el calor y por la pandemia. No se ven los ladrillos colorados, típicos de Norwood, en los Estados Unidos, donde está la sede de Moderna, ni las señoriales callecitas que rodean al Imperial College, en Inglaterra.

Pero aquí, cerca de las avenidas General Paz y Constituyentes, a minutos del tanque de gas gigante que quedó como símbolo de otra época, también se piensa en una vacuna para frenar al Covid-19. De las 169 que aún siguen en carrera, 85 están en la fase preclínica (de ensayos en animales) y una de ellas es un prototipo argentino. Viva va a su encuentro.

El auto dobla hacia una entrada del campus de la Universidad Nacional de San Martín (UNSAM) y aparecen distintos bloques de edificios. El más grande, color cemento, de unos 4 mil metros cuadrados y tres pisos, es la sede del Instituto de Investigaciones Biotecnológicas (IIB). En uno de sus laboratorios trabajan 12 científicos liderados por la investigadora principal del Conicet Juliana Cassataro, experta en inmunología y enfermedades infecciosas. Juntos están atravesando el minuto cero de una vacuna argentina contra el coronavirus.

Juliana Cassataro, líder del grupo de investigación, en su escritorio, con los retratos de sus hijas Juana y Greta. Foto: Andrés D'Elía.

Juliana Cassataro, líder del grupo de investigación, en su escritorio, con los retratos de sus hijas Juana y Greta. Foto: Andrés D’Elía.

El blíndex de entrada tiene un teclado con código de seguridad. Cassataro, distinguida con los premios Houssay (2017) y Fundación Bunge y Born (2014), y financiada tres veces por la Fundación Bill & Melinda Gates, baja para habilitar el ingreso. Al llegar, saluda con un ademán de choque de codos, sin hacer contacto. Prolija, con barbijo quirúrgico y un guardapolvo blanco sobre un vestido floreado.

Demostramos en el laboratorio que la fórmula que estamos investigando induce anticuerpos que neutralizan al virus.

Juliana Cassataro, inmunóloga.

“Nuestro proyecto está en etapa preclínica, de ensayo en animales, casi a punto de terminar esta fase. Es decir, en estos seis meses demostramos, en el laboratorio, que la fórmula que elegimos, basada en proteínas recombinantes –una tecnología muy segura en la que se sustenta por ejemplo la vacuna contra la hepatitis B y en la que tenemos más experiencia–, induce anticuerpos que neutralizan al virus. Ahora estamos hablando con empresas locales que tengan la capacidad de producir este prototipo en condiciones GMP (N. de la R.: Según normas y directrices que garanticen su apropiada fabricación) para poder empezar una fase de prueba en humanos”, dice a metro y medio de distancia.

El escenario

Al atravesar el blíndex se accede a espacios luminosos de escaleras, galerías, escritorios y laboratorios. Las mesadas de trabajo son amplias y en las primeras cuatro se distribuye el equipo de Cassataro. En todas hay pequeños contenedores de cristal (placas de petri, erlenmeyers, balones, beakers), pipetas para dosificar volúmenes, geles de acrilamida para separar proteínas, cajas, computadoras, ficheros y calendarios.

Del otro lado de un largo pasillo están el bioterio, donde se ensaya con animales (ratones), las zonas de máxima bioseguridad y, en las cercanías, las máquinas para hacer observaciones. Por ejemplo, ver si alguna de las versiones de la fórmula está “neutralizando al virus”, es decir, si está dando resultado: si eso ocurre, aparecen imágenes fluorescentes.

Los jefes de cada sector tienen, además, otra área delimitada con escritorios y computadoras, donde van programando las rutinas de cada día y leen papers e información de revistas especializadas en ciencia.

Eliana Castro y Lorena Coria, especializadas en diseño de vacunas, observan un recuento de células infectadas. Foto: Andrés D'Elía.

Eliana Castro y Lorena Coria, especializadas en diseño de vacunas, observan un recuento de células infectadas. Foto: Andrés D’Elía.

Como en muchos laboratorios, hay una escenografía de desorden ordenado. Una señal de que están a toda máquina. “Desde abril estamos trabajando, casi todos, en forma presencial durante doce horas por día. Muy comprometidos”, confirma Cassataro.

La fórmula justa

Aquí, en medio de estos “Juegos de Química” pero de verdad, se está gestando una vacuna que, para empezar a diferenciarla, no se basa en ninguna de las plataformas que utilizan las que ya fueron aprobadas, como la de Moderna y Pfizer (con sus tecnologías ARN), o como la rusa que se aplica en el país con una “aprobación de emergencia” y que consiste en dos dosis, cada una con un vector de adenovirus diferente.

Las fórmulas que ensayó el equipo argentino, y que dieron como resultado, hasta ahora, un prototipo viable, listo para transferir a otra etapa, utilizan proteínas recombinantes.

Cuando se nos brinda apoyo, los científicos argentinos tenemos la capacidad de desarrollar lo que sea que se necesite.

Eliana Castro, bioquímica.

Una técnica que Cassataro explica así: “Nosotros tomamos diferentes partes del virus, como por ejemplo su proteína Spike, para producirlas en laboratorio. Esas proteínas, que son proteínas recombinantes, que nosotros producimos con células en el laboratorio, las purificamos. Logramos que queden recontra puras, de modo que al ingresar al organismo no infecten las células pero sean reconocidas por el sistema inmunológico para generar los anticuerpos necesarios y defenderse del virus real”.

La científica María Laura Darriba dosificando componentes en el laboratorio de la UNSAM. Foto: Andrés D'Elía.

La científica María Laura Darriba dosificando componentes en el laboratorio de la UNSAM. Foto: Andrés D’Elía.

El trabajo del equipo argentino no termina allí. “A la fórmula se le agrega algo más para tener una respuesta inmune deseada. Por eso estudiamos diferentes compuestos. Es decir, utilizamos prototipos con distintas formulaciones y mezclas. Hay que probar la dosis del antígeno, la cantidad, la dosis del otro compuesto. Una gran cantidad de combinaciones. Todo eso lo probamos en animales, estudiamos la respuesta inmune y seleccionamos las mejores fórmulas que induzcan los mejores anticuerpos neutralizantes del virus. A eso nos dedicamos en estos seis meses. Producimos, inmunizamos e hicimos un screeningseleccionamos entre muchas posibilidades. Y logramos un muy buen prototipo y otros dos que son más o menos”, detalla Cassataro.

Cómo sigue

Estos resultados se lograron gracias a un equipo interdisciplinario. “Somos varios inmunólogos que ya veníamos trabajando juntos. Para el proyecto nos unimos, además, al grupo de virólogos de Diego Alvarez, quien se encarga del diseño de las formulaciones candidatas incorporando las mutaciones del virus que circula en la Argentina”, comenta Cassataro.

Y agrega cómo fue el primer momento de este proyecto: “Decidimos presentarnos para recibir un subsidio de investigación del Ministerio de Ciencia y Tecnología bajo el título: Desarrollo de estrategias que ayuden a la prevención del coronavirus. Y es lo que estamos haciendo. Hacer una vacuna es una frase que suena muy linda, pero no se puede lograr solamente en mi laboratorio. Nosotros solos no vamos a poder concretarla. Lo que sí pudimos, en esta primera etapa, fue poner a punto las técnicas para estudiar su respuesta inmune. Para avanzar hay que transferir el prototipo a una empresa que pueda producirla con una manufactura regulada por ANMAT, lograr que se apruebe y pasar a una fase 1. Ahí seríamos parte de una cadena que lamentablemente, en la Argentina, no está conectada”, explica Cassataro.

Se refiere a que, por separado, están los eslabones, pero eso no es suficiente. “En el país tenemos buenos científicos que pueden trabajar bien en un laboratorio. Tenemos también la posibilidad de ensayos clínicos (en humanos) buenísimos. Aquí se hicieron los de Pfizer y están en marcha los de una vacuna china. Además, existen empresas con capacidad de producir, por ejemplo, un principio activo de la vacuna de Oxford. Los eslabones están, pero falta el envión para empezar. Y, por supuesto, como se trata de un proceso largo y muy costoso, se necesita un amplio financiamiento y una decisión política a largo plazo”, revela la científica.

Cuestión de tiempo

El largo plazo que menciona Cassataro es vital en el trabajo científico. Varias de las vacunas contra el Covid-19 que avanzaron rápido, lo hicieron porque quienes las investigaban se basaron en estudios previos.

“Si vemos las vacunas que llegaron muy rápido, detrás de ellas hay científicos que venían trabajando en ellas desde hace 15 o 20 años. No existe algo que sea tan rápido sin una investigación muy profunda”, confirma la experta.

El tiempo también fue clave en la historia de este prototipo argentino. Primero, porque cuando se tomó la decisión de trabajar de manera presencial en el laboratorio hubo que organizar rápidamente las rutinas en casa y apretar en agendas el tiempo para las clases de los chicos (varios científicos de este equipo tienen hijos en edad escolar), para las tareas de la casa y para el trabajo de laboratorio, que en esta etapa es totalmente empírico.

La bioquímica Karina Pasquevich sostiene un gel de acrilamida que se usa para identificar  las proteínas del coronavirus. Foto: Andrés D'Elía.

La bioquímica Karina Pasquevich sostiene un gel de acrilamida que se usa para identificar las proteínas del coronavirus. Foto: Andrés D’Elía.

De los 13 integrantes del grupo, 10 son mujeres, varias con hijos en edad escolar y una de ellas, la bioquímica y viróloga Eliana Castro, está embarazada. No fue fácil arrancar, pero apareció allí lo que más brilló en pandemia: la idea de que todo es posible aún en las peores condiciones.

Eugenia Bardossy tiene 35 años, es bioquímica y dice que “su participación es mínima comparada con lo que realizan otros colegas del equipo”. Lo que fue máximo en su vida fue organizarse para seguir trabajando y no desatender a sus dos hijos: uno de 3 años y otro de 10 meses.

Lorena Coria es una experta en inmunología y tiene un nene de dos años que, cuando ella está en el laboratorio, queda al cuidado de su pareja. La salud humana le interesó desde que estaba en el secundario. Por eso se siente muy plena en este momento: “Cuando empezó la pandemia y se presentó la oportunidad de colaborar aportando nuestro conocimiento y experiencia en el desarrollo de vacunas para ayudar a combatir este problema, no lo dudamos. Estamos aprendiendo mucho y además somos conscientes de que estamos desarrollando algo que nos daría independencia en el suministro de vacunas”.

Cuando era chica, a Eliana Castro le interesaba “lo microscópico y lo astronómico”, pero en la adolescencia se orientó hacia la salud. Se anotó como voluntaria en el Hospital Evita, de Lanús, para saber si su vocación era más asistencial o de investigación. Decidió estudiar bioquímica en la UBA. Hoy es una experta en diseño de vacunas.

“Ser parte de este proyecto implica cumplir, realmente, con el objetivo de aportar a la prevención de una enfermedad, en este caso causada por un virus nuevo que está dañando a la sociedad y que me ha golpeado personalmente. También hizo tangible la capacidad que tenemos en nuestro país de desarrollar lo que sea que se necesite cuando se nos brinda apoyo”, comenta sobre su rol de científica.

Estamos trabajando en algo que nos daría independencia en el suministro de vacunas.

Lorena Coria, inmunóloga.

Sobre su rol de mamá, cuenta: “Con mi marido, tuvimos que incluir en nuestras rutinas las actividades y cuidados de nuestra hija de 5 años a tiempo completo (zooms, tareas, juegos). También organizarnos con las tareas de la casa. Así que trabajo en el laboratorio a la mañana, y las lecturas, reuniones y docencia los hago desde casa. Ahora , además, estoy embarazada de 4 meses, así que estamos muy contentos.”

Leandro Battini tiene 29 años y es uno de los más jóvenes del grupo. Es biólogo, está cursando su doctorado y se interesa por el desarrollo de antivirales. Pertenece al grupo de Diego Alvarez, fusionado con el de Cassataro. Para él, la vocación estuvo clara desde siempre. Sus padres y su hermano son biólogos y su pareja, también. “En 2020, por la pandemia, muchos científicos se orientaron al Covid-19. En ese contexto llegué a este grupo”, explica.

Claudia Filomatori es bioquímica y doctora en Ciencias Biológicas. Tiene una función vital: analiza la variabilidad del material genético del virus que circula en la Argentina. Pero lo realmente difícil es “compatibilizar la ecuación Pandemia/Familia/Trabajo. Tengo tres hijos en edad escolar y por momentos se me hizo complicado ser mamá, ama de casa, maestra y científica”.

La bioquímica Karina Pasquevich participa activamente en el estudio de las respuestas inmunes de las fórmulas probadas. Desde pequeña, su padre, físico, le transmitió la pasión por hacerse preguntas y tratar de responderlas. Sobre su vida en pandemia dice: “Tuve la escuela de mis dos hijas en casa, fue un desafío a nivel familiar. Afortunadamente, tuve el apoyo de mi marido y los abuelos para venir al laboratorio”.

El equipo de la “vacuna argentina” se completa con los científicos Diego AlvarezMaría Laura DarribaLucas SaposnikCeleste Pueblas Castro (de 26 años, quien justo una semana antes de la cuarentena se mudó para vivir sola), Laura Bruno y Lucía Chemes.

Ciencias de la vida

La directora del proyecto, Juliana Cassataro, también tuvo que adaptar a su familia para el trabajo en pandemia. Con su marido, Roberto, organizaron los tiempos de atención para Juana, de 17, y Greta, de 13.

De ellas habla sin pausa, pero cuando se le pregunta sobre sus propios orígenes, duda en responder. “No porque quiera ocultarlos, sino porque no quiero que mi historia desvíe el foco de atención de nuestro trabajo científico”, dice.

Se refiere a que es hija de padres desaparecidos. Cassataro, de 46 años, tenía 3 años y medio cuando se llevaron a sus padres. No recuerda nada. A ella y a su hermana menor las dejaron en la Casa Cuna de La Plata, donde fueron encontradas por un tío abuelo.

“Me educó mi abuela Juana, de Mar del Plata, con mucho amor y exigencia para el estudio. A veces pienso que el darme cuenta, tan temprano, de que no todo es perfecto y de que las cosas pueden fallar, me hizo siempre tener un plan B, C, D y E para que todo funcione. También pienso si el volcarme hacia las ciencias de la vida tiene que ver con que son lo opuesto a lo que viví cuando era chica”, comenta.

¿Por qué tu equipo quiere seguir con el proyecto de una vacuna si ya hay otras que se están aplicando?

Nosotros vamos a tardar seguramente mucho más tiempo del que la sociedad demanda en este momento, pero si estas vacunas que ahora se compraron y se están aplicando en nuestro país requieren refuerzos anuales, en un futuro estaría buenísimo poder hacerlas acá y que estas capacidades existan en la Argentina. Así no hay que estar esperando si nos las envían, o si las compran. Si un día no se puede… tenemos que tener la capacidad de hacerlas.

Y en una mañana de agobio, por el calor y la pandemia, llega aire fresco. Cassataro dice al despedirse que, si tuviera todos los recursos necesarios disponibles, a mediados de 2022 podría estar terminándose esta vacuna que ahora da sus primeros pasos. ¿Un sueño?

(Visited 3 times, 1 visits today)
Seguir leyendo

Más Visitadas